

 آرتمیس کاریا

Instagram: artemis_karia www.artemiskaria.ir

Radar Emulator with Arduino + Python

Parts List and Wiring to Arduino

The replication of a radar system involves two essential components: a ranging device and an angular

motor/detector. As stated above, the ranging device can be any device that detects distance from a

stationary point. The HC-SR04 ultrasonic device will be used, however the VL53L0X ranging sensor

(uses the time-of-flight technique with a 940nm laser) has also been used and works just fine with this

tutorial as well. A kit has been assembled specifically for replicating this tutorial, and it is recommended

http://www.artemiskaria.ir/
https://makersportal.com/shop/hc-sr04-ultrasonic-distance-sensor
https://makersportal.com/shop/vl53l0x-laser-rangefinder-005m-22m-working-range

 آرتمیس کاریا

Instagram: artemis_karia www.artemiskaria.ir

for following along with this tutorial. The only thing needed in addition to the kit is an Arduino board and

a computer. The individual components are listed below as well, in case the user wants to assemble the

components independently:

Tutorial Kit:

 Arduino Radar Kit with HC-SR04 and MG90S]

Component List:

 Arduino Uno Board]

 MG90S Micro Servo Motor]

 HC-SR04 Ultrasonic Sensor]

 Jumper Wires - (12 pcs: 8 male-to-female, 4 male-to-male)

 Mini Breadboard -]

 VL53L0X Time-of-Flight Sensor -]

HC-SR04 + MG90S Radar Kit

http://www.artemiskaria.ir/
https://makersportal.com/shop/hc-sr04-mg90s-radar-kit
https://makersportal.com/shop/hc-sr04-mg90s-radar-kit
https://makersportal.com/shop/hc-sr04-mg90s-radar-kit
https://makersportal.com/shop/hc-sr04-mg90s-radar-kit

 آرتمیس کاریا

Instagram: artemis_karia www.artemiskaria.ir

The HC-SR04 and MG90S can be wired to an Arduino Uno board using the following diagram:

The Arduino code uses this particular wiring configuration, however, the pins can easily be changed in the

code to represent specific wirings. The Python code given later will also describe how the Arduino is

being read through the serial port, and why certain Serial.print() methods are called.

Arduino Code and Usage

The Arduino code uses the servo library to communicate via pulse-width modulation (PWM) over one of

its pins [read more about PWM with the Raspberry Pi Panning Camera Tutorial or the Arduino Servo

http://www.artemiskaria.ir/
https://makersportal.com/shop/mg90s-micro-servo
https://makersportal.com/blog/2020/3/21/raspberry-pi-servo-panning-camera
https://makersportal.com/blog/2020/3/14/arduino-servo-motor-control

 آرتمیس کاریا

Instagram: artemis_karia www.artemiskaria.ir

Basics Tutorial]. A custom algorithm is used to retrieve ranging data from the HC-SR04, using the time-

of-flight effect for sound waves. Both the angle of the MG90S servo motor (0° - 180°) and the distance

approximated from the HC-SR04 (2cm - 400cm) are outputted to the serial port for a Python program to

read (more on this later). The Arduino code is thus given below:

#include <Servo.h>

Servo servo_1; // servo controller (multiple can exist)

int trig = 4; // trig pin for HC-SR04

int echo = 5; // echo pin for HC-SR04

int servo_pin = 3; // PWM pin for servo control

int pos = 0; // servo starting position

float duration,distance;

void setup() {

 Serial.begin(115200);

 Serial.println("Radar Start");

 servo_1.attach(servo_pin); // start servo control

 pinMode(trig,OUTPUT);

 pinMode(echo,INPUT);

}

void loop() {

 for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees

 // in steps of 1 degree

 servo_1.write(pos); // tell servo to go to position in variable 'pos'

 delay(60); // delay to allow the servo to reach the desired position

 dist_calc(pos);

 }

 for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees

 servo_1.write(pos); // tell servo to go to position in variable

'pos'

 delay(60);

 dist_calc(pos);

 }

}

float dist_calc(int pos){

 // trigger 40kHz pulse for ranging

 digitalWrite(trig,LOW);

 delayMicroseconds(2);

 digitalWrite(trig,HIGH);

 delayMicroseconds(10);

 digitalWrite(trig,LOW);

 // convert from duration for pulse to reach detector (microseconds) to range (in cm)

 duration = pulseIn(echo,HIGH); // duration for pulse to reach detector (in microseconds)

http://www.artemiskaria.ir/
https://makersportal.com/blog/2020/3/14/arduino-servo-motor-control
https://makersportal.com/shop/hc-sr04-ultrasonic-distance-sensor
https://makersportal.com/shop/mg90s-micro-servo
https://makersportal.com/shop/hc-sr04-ultrasonic-distance-sensor

 آرتمیس کاریا

Instagram: artemis_karia www.artemiskaria.ir

 distance = 100.0*(343.0*(duration/2.0))/1000000.0; // 100.0*(speed of

sound*duration/2)/microsec conversion

 Serial.print(pos); // position of servo motor

 Serial.print(","); // comma separate variables

 Serial.println(distance); // print distance in cm

}

The time-of-flight equation, given in the ‘dist_calc()’ function, uses the following principle:

where d is the distance from the HC-SR04 sensor to the object it is detecting, c is the speed of sound in air

(~343m/s), and Δt is the recorded time it takes for the pulse to reach the target and arrive back at the

receiver (detector).

http://www.artemiskaria.ir/

 آرتمیس کاریا

Instagram: artemis_karia www.artemiskaria.ir

Opening the serial port on the Arduino should read the following:

N O T E : V E R I F Y I N G T H E P R I N T O U T A B O V E I S E S S E N T I A L

F O R C O N T I N U I N G W I T H T H I S T U T O R I A L

http://www.artemiskaria.ir/

 آرتمیس کاریا

Instagram: artemis_karia www.artemiskaria.ir

If the printout is not similar to that above, then the Python serial reader code in the following section will

not work properly. The ‘Radar Start’ printout tells the Python code to start its radar analysis, and the

comma-separated 'angle,distance' format feeds the data exactly as it needs to be read in the Python code.

Therefore, if the printout does not mimic that above, then the Python code will return errors.

Python Code and Demonstration

In Python, this project become exponentially more complex. The reason being, as stated in the

introduction to this tutorial, a plan position indicator (PPI) will be used to visualize the point map as the

MG90S motor rotates 180° back and forth about its axis. The reason why this becomes difficult, is that we

now need to take a polar plot and populate it with the outputs of the Arduino board. Therefore, our process

becomes the following:

1. Start communication with Arduino board

2. Create polar plot for radar emulator

3. Begin looping through incoming Arduino data

4. Wait for ‘Radar Start’ to begin plotting

5. Update scatter points and PPI

http://www.artemiskaria.ir/

 آرتمیس کاریا

Instagram: artemis_karia www.artemiskaria.ir

And if this were to be done exactly as it is referenced above, it would take quite a bit of resources to do in

real-time. Thus, a few work arounds are implemented to ensure efficiency in the plotting and reading of

data. The following are simplifications and implementations of efficient methods for update and plotter

the angle and ranging scatter points received by the Arduino:

1. Only update the data, not the plot (restore_region(), drawartist(), and blit() snippets of code below)

2. Only plot every 5 degrees of rotation

All of the routine and implementations above are given below in the code, with comments where

necessary:

Python + Arduino-based Radar Plotter

** Works with any motor that outputs angular rotation

** and with any distance sensor (HC-SR04, VL53L0x,LIDAR)

import numpy as np

import matplotlib

matplotlib.use('TkAgg')

import matplotlib.pyplot as plt

from matplotlib.widgets import Button

import serial,sys,glob

import serial.tools.list_ports as COMs

Find Arudino ports, select one, then start communication with it

def port_search():

 if sys.platform.startswith('win'): # Windows

 ports = ['COM{0:1.0f}'.format(ii) for ii in range(1,256)]

 elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'):

 ports = glob.glob('/dev/tty[A-Za-z]*')

 elif sys.platform.startswith('darwin'): # MAC

 ports = glob.glob('/dev/tty.*')

 else:

 raise EnvironmentError('Machine Not pyserial Compatible')

 arduinos = []

 for port in ports: # loop through to determine if accessible

 if len(port.split('Bluetooth'))>1:

 continue

 try:

 ser = serial.Serial(port)

 ser.close()

 arduinos.append(port) # if we can open it, consider it an arduino

 except (OSError, serial.SerialException):

http://www.artemiskaria.ir/

 آرتمیس کاریا

Instagram: artemis_karia www.artemiskaria.ir

 pass

 return arduinos

arduino_ports = port_search()

ser = serial.Serial(arduino_ports[0],baudrate=115200) # match baud on Arduino

ser.flush() # clear the port

Start the interactive plotting tool and

plot 180 degrees with dummy data to start

fig = plt.figure(facecolor='k')

win = fig.canvas.manager.window # figure window

screen_res = win.wm_maxsize() # used for window formatting later

dpi = 150.0 # figure resolution

fig.set_dpi(dpi) # set figure resolution

polar plot attributes and initial conditions

ax = fig.add_subplot(111,polar=True,facecolor='#006d70')

ax.set_position([-0.05,-0.05,1.1,1.05])

r_max = 100.0 # can change this based on range of sensor

ax.set_ylim([0.0,r_max]) # range of distances to show

ax.set_xlim([0.0,np.pi]) # limited by the servo span (0-180 deg)

ax.tick_params(axis='both',colors='w')

ax.grid(color='w',alpha=0.5) # grid color

ax.set_rticks(np.linspace(0.0,r_max,5)) # show 5 different distances

ax.set_thetagrids(np.linspace(0.0,180.0,10)) # show 10 angles

angles = np.arange(0,181,1) # 0 - 180 degrees

theta = angles*(np.pi/180.0) # to radians

dists = np.ones((len(angles),)) # dummy distances until real data comes in

pols, = ax.plot([],linestyle='',marker='o',markerfacecolor = 'w',

 markeredgecolor='#EFEFEF',markeredgewidth=1.0,

 markersize=10.0,alpha=0.9) # dots for radar points

line1, = ax.plot([],color='w',

 linewidth=4.0) # sweeping arm plot

figure presentation adjustments

fig.set_size_inches(0.96*(screen_res[0]/dpi),0.96*(screen_res[1]/dpi))

plot_res = fig.get_window_extent().bounds # window extent for centering

win.wm_geometry('+{0:1.0f}+{1:1.0f}'.\

 format((screen_res[0]/2.0)-(plot_res[2]/2.0),

 (screen_res[1]/2.0)-(plot_res[3]/2.0))) # centering plot

fig.canvas.toolbar.pack_forget() # remove toolbar for clean presentation

fig.canvas.set_window_title('Arduino Radar')

fig.canvas.draw() # draw before loop

axbackground = fig.canvas.copy_from_bbox(ax.bbox) # background to keep during loop

button event to stop program

http://www.artemiskaria.ir/

 آرتمیس کاریا

Instagram: artemis_karia www.artemiskaria.ir

def stop_event(event):

 global stop_bool

 stop_bool = 1

prog_stop_ax = fig.add_axes([0.85,0.025,0.125,0.05])

pstop = Button(prog_stop_ax,'Stop Program',color='#FCFCFC',hovercolor='w')

pstop.on_clicked(stop_event)

button to close window

def close_event(event):

 global stop_bool,close_bool

 if stop_bool:

 plt.close('all')

 stop_bool = 1

 close_bool = 1

close_ax = fig.add_axes([0.025,0.025,0.125,0.05])

close_but = Button(close_ax,'Close Plot',color='#FCFCFC',hovercolor='w')

close_but.on_clicked(close_event)

fig.show()

inifinite loop, constantly updating the

180deg radar with incoming Arduino data

start_word,stop_bool,close_bool = False,False,False

while True:

 try:

 if stop_bool: # stops program

 fig.canvas.toolbar.pack_configure() # show toolbar

 if close_bool: # closes radar window

 plt.close('all')

 break

 ser_bytes = ser.readline() # read Arduino serial data

 decoded_bytes = ser_bytes.decode('utf-8') # decode data to utf-8

 data = (decoded_bytes.replace('\r','')).replace('\n','')

 if start_word:

 vals = [float(ii) for ii in data.split(',')]

 if len(vals)<2:

 continue

 angle,dist = vals # separate into angle and distance

 if dist>r_max:

 dist = 0.0 # measuring more than r_max, it's likely inaccurate

 dists[int(angle)] = dist

 if angle % 5 ==0: # update every 5 degrees

 pols.set_data(theta,dists)

 fig.canvas.restore_region(axbackground)

 ax.draw_artist(pols)

 line1.set_data(np.repeat((angle*(np.pi/180.0)),2),

http://www.artemiskaria.ir/

 آرتمیس کاریا

Instagram: artemis_karia www.artemiskaria.ir

 np.linspace(0.0,r_max,2))

 ax.draw_artist(line1)

 fig.canvas.blit(ax.bbox) # replot only data

 fig.canvas.flush_events() # flush for next plot

 else:

 if data=='Radar Start': # stard word on Arduno

 start_word = True # wait for Arduino to output start word

 print('Radar Starting...')

 else:

 continue

 except KeyboardInterrupt:

 plt.close('all')

 print('Keyboard Interrupt')

 break

T H E C O D E H A S B E E N T E S T E D F O R L I N U X

(R A S P B E R R Y P I) , W I N D O W S 1 0 , A N D M A C ' S

C A T A L I N A O S - A L L W I T H P Y T H O N 3 . 6 +

After running the code above, the following plot should appear:

http://www.artemiskaria.ir/

 آرتمیس کاریا

Instagram: artemis_karia www.artemiskaria.ir

The graphical user interface (GUI) allows users to stop the program or close the plot and exit the program.

Meanwhile, the plot should be updated every 5 degrees (about every 300ms), with scatter points being

placed where objects are detected by the HC-SR04. There is also a sweeping arm that is part of the plan

position indicator, which notifies the user of the approximate location of the motor or area being ranged.

One final thing to note is that the HC-SR04 does not produce perfect points in space. Its cone of detection

is roughly 15° - meaning that it can accurately predict distances at short range, but at longer ranges it has

difficulty discerning small area objects from larger area objects. The 15° cone of direction amounts to

roughly an object area of 13% of the distance it might be. As an example, an object that is 1m away will

need to be 130cm for the HC-SR04 to properly detect it. If the area is smaller, then it may misinterpret the

size of the object and therefore its ability to recognize it. If the object is larger than 130cm, then it may

register over multiple angles until it is out of the majority sight of the sensor. If we assume a person is

about 50cm wide, this means that at about 400cm the HC-SR04 will properly recognize it. If the person is

further than 400cm, then the sensor may not register the person, whereas if the person is within 400cm,

then it will recognize it over multiple angles.

Conclusion

http://www.artemiskaria.ir/

 آرتمیس کاریا

Instagram: artemis_karia www.artemiskaria.ir

An Arduino-based radar project was implemented in this tutorial using an Arduino,

HC-SR04 ultrasonic distance sensor, MG90S micro servo motor, and Python code

run on a Raspberry Pi. The goal of this project was to introduce a novel concept

related to real-world technology, but implemented through inexpensive tools

available to the maker and aspiring engineer. The HC-SR04 uses sound waves to

approximate the distance between its receiver and an object in the distance, while the

MG90S servo rotates in a prescribed fashion according to pulse-width modulation

signals controlled by the Arduino board. In order to visualize the outputted angular

position and approximate ranging of the HC-SR04 - Python code was implemented

on a Raspberry Pi to create a plan position indicator on a polar plot. This PPI gives

the user a way of visualizing the objects that surround the motor and ultrasonic

sensor, much like a radar approximates the objects surrounding its base station.

Several skills used in this tutorial can be applied to real-world applications, whether

through obstacle detection, motor control, distancing and ranging, or even a new tool

for visualizing data.

http://www.artemiskaria.ir/

