
Project

Make a Wireless Thermometer with Arduino

Learn how to use a 433MHz RF module with an ATMega 328P-PU. In this article, we'll make a
circuit with a DHT11 sensor and a RF transmitter. We'll also make a receiving circuit with a
433MHz RF receiver and an LCD display.

Learn how to use a 433MHz RF module with an ATMega 328P-PU. In this article I will make a circuit with a DHT11 sensor and a RF transmitter. I will also
make a receiving circuit, with a 433MHz RF receiver and an LCD display.

Requirements

A computer running Arduino IDE. (I'm using v 1.6.5)
VirtualWire library (Link below)
Arduino Mega
ATMega328p
AVR MKII ISP programmer
An LCD display
DHT11
433MHz RF modules (Transmitter and receiver
Jumper wires
Breadboard
Parts according the parts list below

Introduction

In this article I will show you how to make a circuit that measures temperature and relative humidity and send those measurements with an off-theshelf
433MHz RF module. The temperature and humidity sensor is the DHT11.

There are many ways you can send small amounts of data with an Arduino or other ATMega-microcontrollers. One of them is using an already-made
library like RCSwitch, Radiohead, or VirtualWire. It is also possible to send raw data with the microcontroller's built-in UART feature. Using the built-
in UART is not recomended because the receiver will pick up all kinds of noise, so the microcontroller will not act the way you want it to. In this article, I am
using the VirtualWire library to transmit and receive data. The library works with Arduino IDE 1.6.2 and 1.6.5.

The 433MHz transmitter module will oscillate and transmit noise when it is not transmitting data. It might also interfere with other RF applications. To
prevent that from happening, I am turning it on when it transmits, and turning it off when it is not transmitting.

*Note that all code is in zip form at the bottom of this article

Hardware

We need 2 block diagrams. One for the transmitter circuit and one for the receiver circuit.

The transmitter:

I want:

A way to program the microcontroller -> ISP
A sensor to measure temperature and humidity -> DHT11
A microcontroller to process the data -> ATMega328p
A way to send this wireless -> 433MHz RF module

The receiver:

I want:

A way to receive the RF signal -> 433MHz RF module A
way to process the received data -> Arduino Mega
A way to display the temperature and humidity -> 16x2 LCD

Schematic diagrams Transmitter :

Instagram: artemis_karia www.artemiskaria.ir

https://www.allaboutcircuits.com/author/jens-christoffersen
https://www.sparkfun.com/products/11061
http://www.digikey.com/product-detail/en/ATMEGA328P-PU/ATMEGA328P-PU-ND/1914589
http://www.digikey.no/product-search/en?keywords=avr%20mkii%20isp
http://www.digikey.com/product-search/en/optoelectronics/display-modules-lcd-oled-character-and-numeric/524437?k=lcd%20display
https://www.sparkfun.com/products/10167
http://www.seeedstudio.com/depot/433Mhz-RF-link-kit-p-127.html
http://www.digikey.com/product-search/en/prototyping-products/jumper-wire/2359516?k=jumper%20wires
http://www.digikey.com/product-search/en/prototyping-products/solderless-breadboards/2359510?k=breadboard
https://www.allaboutcircuits.com/projects/how-to-use-a-dht11-with-a-pic16f628-and-lcd/
https://www.pjrc.com/teensy/td_libs_VirtualWire.html

In this example, I am not going to tie the unused pins on the microcontroller to a pad for further development. This will only be made on a breadboard.

Receiver:

Please note that the receiver is an Arduino Mega, and it is not in the schematic. Follow the labels on the schematic to connect to the Arduino Mega.

Instagram: artemis_karia www.artemiskaria.ir

https://www.allaboutcircuits.com/uploads/articles/jc_ATmega328_RF_thermometer.png
https://www.allaboutcircuits.com/uploads/articles/jc_ATmega328_RF_thermometer_rx.png

Scroll to continue with content

Parts list

Transmitter:

Receiver:

Software

First is the transmitter software:

// Include needed libraries
#include <VirtualWire.h>
#include <DHT.h>

// Defininition
#define dhtPin 4
#define dhtType DHT11
#define txPowerPin 8

Instagram: artemis_karia www.artemiskaria.ir

// using the DHT library
DHT dht(dhtPin, dhtType);

// Variables
char msg0[3];
char msg1[3];

int tem = 0;
int hum = 0;

// Setup function - run one time
void setup() {
 pinMode(txPowerPin, OUTPUT);
 pinMode(txPowerPin, LOW);
 vw_setup(4800); // VirtualWire communication speed
 vw_set_tx_pin(9); // VirtualWire transmit pin
}

// Loop function - runs forever
void loop() {
 digitalWrite(txPowerPin, HIGH);
 hum = dht.readHumidity(); // Variable holding humidity
 tem = dht.readTemperature(); // Variable holding temperature
 itoa(hum, msg1, 10); // Converting humidity to an array of chars
 itoa(tem, msg0, 10); // Converting the temperature to an array of chars
 strcat(msg0, msg1); // Adding/joining the two arrays
 vw_send((uint8_t *)msg0, strlen(msg0)); // Sending the msg
 vw_wait_tx(); // Wait for tx to finish

 digitalWrite(txPowerPin, LOW);

 delay(5000); // Wait five seconds and it again

}

To send the humidity and the temperature in one single send statement, I join them together since this is one-way communication. First, the data is read into
the variable as integers, then the integers are converted to an array of characters, and finally they are joined together. On the receiver side, the data will be split
into single characters. By doing it this way, I am limiting myself to 2 digit degrees. If the sensor is in an environment with less than 10oC, I will get some
rubbish characters on the display. For example, if the temperature is 20oC and the humidity is 45%, it sends 2045, which is fine. If the temperature is 9oC and
the humidity is 78%, it sends 978x, where the x represents a random character. I challenge the reader to change the software to send the right data when
temperature is less than 10oC.

Receiver software:

// Include needed libraries
#include <VirtualWire.h>
#include <LiquidCrystal.h>

// Definitions for the LCD connections
#define RS 9
#define E 10
#define D4 5
#define D5 6
#define D6 7
#define D7 8

LiquidCrystal lcd(RS, E, D4, D5, D6, D7);

// "Drawing" the degree symbol
byte degreesymbol[8] = {
 B01100,
 B10010,
 B10010,
 B01100,
 B00000,
 B00000,
 B00000,
 B00000
};

// Variables
int tem = 0;
int i;

// Setup function - run one time
void setup() {
 lcd.begin(16,2); // Defining the LCD
 lcd.createChar(1, degreesymbol); // Creating the degree symbol at place 1
 Serial.begin(9600); // For debugging purpose
 vw_setup(4800); // VirtualWire communication speed
 vw_rx_start(); // Getting redy to receive
 vw_set_rx_pin(2); // VirtualWiore receive pin
 lcd.clear(); // Clear the LCD
}

// Loop function - runs forever
void loop() {
 uint8_t buf[VW_MAX_MESSAGE_LEN]; // Variable to hold the received data
 uint8_t buflen = VW_MAX_MESSAGE_LEN; // Variable to hold the length of the received data
 lcd.setCursor(0,0);
 lcd.print("Temp: ");
 if (vw_get_message(buf, &buflen)) // If data is received
 {
 for (i=0;i<2;i++) // Get the two first bytes
 {
 Serial.write(buf[i]); // Debugging purpose

Instagram: artemis_karia www.artemiskaria.ir

 lcd.write(buf[i]); // Write the first bytes on the LCD
 }
 Serial.println(); // Debugging purpose
 lcd.write(1); // Write the degree symbol on the LCD
 lcd.print(" C");
 lcd.setCursor(0,1);
 lcd.print("Hum: ");
 for (i=2;i<4;i++) // Get the two last bytes
 {
 Serial.write(buf[i]); // Debugging
 lcd.write(buf[i]); // Write the last bytes on the LCD
 }
 lcd.print("% RH");
 }
}
</i>

A fun way of using the LiquidCrystal library is to make custom characters. With the createChar, I made the degree symbol. With the same technique, you can
make your own symbols. To make a custom symbol or character, you declare it as a byte, and "draw" the pixels that will be on. 1 is on and 0 is off.

In the setup() function you create it with createChar. createChar takes two arguments: a position to hold the number of the character and the name of the
character you create. In my case it is: lcd.createChar(1, degreesymbol); The symbol is then sent to the lcd display with the lcd.write-command.

Conclusion

In this article, I have used a DHT11 temperature and humidity sensor. The temperature and the humidity have been converted to an array of characters, and
then sent with a 433MHz transmitter. On the receiver side, the array of characters has been split into pairs and displayed on an LCD. To get the degree
symbol, I used the LiquidCrystal library's createChar function.

Downloads

Pictures and video

Transmitter:

Instagram: artemis_karia www.artemiskaria.ir

Receiver:

Instagram: artemis_karia www.artemiskaria.ir

https://www.allaboutcircuits.com/bom/Ug8ungLcL2
https://www.youtube.com/watch?v=SPQHy4g0H70

